If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+18x-3=0
a = 6; b = 18; c = -3;
Δ = b2-4ac
Δ = 182-4·6·(-3)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{11}}{2*6}=\frac{-18-6\sqrt{11}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{11}}{2*6}=\frac{-18+6\sqrt{11}}{12} $
| x=5/9*(2x-32) | | a^2-a+200=0 | | (2x-1)2-4(3x+1)=2 | | 3(2y-5)=4y+y6 | | 3x-1.7=4.4 | | 5x^2+7x-160=0 | | 3(x+5)–4=8. | | 17z-8=14z+19 | | x+(x+2)=x+4+31 | | 3a+1=28 | | 3x^2+15x-45=0 | | 15=3m-15 | | 21=8n+5 | | 6(3+q)=18 | | 3x-2x=222x=22x=22÷2 | | 9t-2=7 | | 9m^2-24m-128=0 | | 9m^2-16m-128=0 | | 5t(7-t)=0 | | 20x-30=60 | | 3(7-y)-6+2=-21 | | X+2x=3x+2 | | 3/5x=72 | | 2x+15=4.5 | | 5+60/x=25 | | 2x^2+24-49x=0 | | 7p-2=6p-1 | | -4x+1=-4x+231 | | -5x-1=2-x | | -4x+10=-4x+25 | | 17p-2=49 | | 3x-2=16x^2-24+9 |